US009256454B2

a2 United States Patent

Bell et al.

US 9,256,454 B2
*Feb. 9, 2016

(10) Patent No.:
(45) Date of Patent:

(54)

(71)

(72)

(73)

")

@
(22)

(65)

(63)

(1)

(52)

(58)

DETERMINING OPTIMAL METHODS FOR
CREATING VIRTUAL MACHINES

Applicant: International Business Machines
Corporation, Armonk, NY (US)
Inventors: Eugene Bell, Cork (IL); Eoin Byrne,
Cork (IL); Padraig MacSeain, Cork
(IL); Adrian O’Sullivan, Cork (IL)

International Business Machines
Corporation, Armonk, NY (US)

Assignee:

Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35
U.S.C. 154(b) by O days.

This patent is subject to a terminal dis-
claimer.

Appl. No.: 14/478,356

Filed: Sep. 5,2014

Prior Publication Data

US 2015/0082307 Al Mar. 19, 2015

Related U.S. Application Data

Continuation of application No. 14/031,305, filed on
Sep. 19, 2013, now Pat. No. 9,110,699.

Int. Cl1.

GO6F 9/44 (2006.01)

GO6F 9/455 (2006.01)

GO6F 17/30 (2006.01)

U.S. CL

CPC GO6F 9/45533 (2013.01); GOGF 8/20

(2013.01); GO6F 17/30424 (2013.01); GO6F
8/30 (2013.01); GOGF 8/36 (2013.01); GO6F
8/71 (2013.01); GOGF 2009/45562 (2013.01)
Field of Classification Search
CPC GOG6F 8/20; GO6F 8/30; GO6F 8/36;

GOGF 8/71; GOGF 9/44505; GOG6F 9/44589;
GOG6F 11/3688; GOGF 11/3684
See application file for complete search history.
(56) References Cited

U.S. PATENT DOCUMENTS

8,037,289 B1* 10/2011 Karniketal.cccceoee 713/1
8,370,819 B2 2/2013 Chakraborty et al.
8,656,018 B1* 2/2014 Keagyetal. ... 709/226
9,110,699 B2* 8/2015 Bell et al.
2003/0056054 Al* 3/2003 Levyetal. ...cccoovrnrenenn. 711/6
(Continued)

FOREIGN PATENT DOCUMENTS

WO 2009026703 Al 3/2009

OTHER PUBLICATIONS

Ashino et al., “Virtual Machine Migration Method between Different
Hypervisor Implementations and Its Evaluation”, 2012 IEEE, Mar.
26, 2012, pp. 1089-1094; <http://ieceexplore.icee.org/stamp/stamp.
jsp?tp=&arnumber=6185394>.*

(Continued)

Primary Examiner — Thuy Dao

Assistant Examiner — Ben C Wang

(74) Attorney, Agent, or Firm — Edward J. Wixted, I11; [saac
J. Gooshaw

(57) ABSTRACT

A computer receives at least one requirement for a new VM.
The computer identifies an existing VM to be modified during
the generation of the new VM. The computer determines at
least one step necessary to create the new VM configuration
from the existing VM. The computer presents at least one
pathway to the new VM from the existing VM. The computer
receives a selection of a presented pathway to create the new
VM.

10 Claims, 3 Drawing Sheets

‘ RECEIVE REQUIREMENTS FOR A |'v 205

NEW VM TO BE CREATED

DO ANY PRESENT
VMs OR SNAPSHOTS HAVE
SIMILAR ATTRIBUTES

210

RECOMMEND
CREATING A
NEW VM

215

CALCULATE POSSIBLE PATHS USING 220
POINT

‘ EXISTING VM / SNAPSHOT AS A STARTING

1

DISPLAY ALL POSSIBLE PATHS TO
CREATION OF NEW VM

225

USER SELECTS A GIVEN PATH 230

F

NEW VM IS CREATED USING
DETERMINED SEQUENCE OF STEPS

|—-v 235

US 9,256,454 B2
Page 2

(56) References Cited
U.S. PATENT DOCUMENTS

2006/0218544 Al*
2007/0168940 Al*

9/2006 Chakraborty et al. 717/168
7/2007 Lunawat 717/108

2007/0300220 Al* 12/2007 Seligeretal.ccoo.. 718/1
2008/0089338 Al 4/2008 Campbell et al.
2009/0288084 Al* 11/2009 Asteteetal. ... 718/1

2011/0022694 Al
2011/0213765 Al
2012/0131480 Al*
2012/0151480 Al*

1/2011 Dalal et al.

9/2011 Cui et al.

5/2012 Kalmbach et al. 715/763
6/2012 Diehletal.cccoovverernnnnn 718/1

2012/0272238 Al 10/2012 Baron

2013/0036214 Al* 2/2013 Carmeletal. ... 709/223
2013/0275975 Al 10/2013 Masuda et al.

2013/0297964 Al* 11/2013 Hegdaletal. 714/2

2013/0346615 Al
2014/0059539 Al*
2014/0215267 Al
2014/0223428 Al
2014/0229939 Al
2014/0258235 Al
2014/0258238 Al 9/2014 Jin et al.
2015/0082307 Al 3/2015 Bell etal.

OTHER PUBLICATIONS

12/2013 Gondi
2/2014 Simonsen et al. 718/1
7/2014 Hegdal et al.
8/2014 Hackett et al.
8/2014 Dias de Assuncao et al.
9/2014 Jin et al.

Carl A. Waldspurger, “Memory resource management in VMware
ESX server”, ACM SIGOPS Operating Systems Review—OSDI’02,
vol. 36 Issue SI, Dec. 31, 2002, pp. 181-194; <http://dl.acm.org/
citation.cfm?id=844146>*

Li et., “Virtual Machine Placement for Predictable and Time-Con-
strained Peak Loads”, Springer-Verlag Berlin Heidelberg, Dec. 5,
2011, LNCS 7150, pp. 120-134; <http://link.springer.com/chapter/
10.1007%2F978-3-642-28675-9_ 9#page-1>*

Singh, “Creating and Working with Virtual Environments”, Jun. 2,
2009, <http://blogs.msdn.com/b/lab__management/archive/2009/
06/02/creation-and-working-with-virtual-environments.aspx>.
Ismael, “Creating development environments with Vagrant and Pup-
pet”, Jan. 11, 2013, © 2013 ServerGrove | The PHP Hosting Co.,
<http://blog.servergrove.com/2013/01/11/creating-development-
environments-with-vagrant-and-puppet/>.

U.S. Appl. No. 14/031,305, entitled “Determining Optimal Methods
for Creating Virtual Machines”, filed Sep. 19, 2013.

Ashino et al., “Virtual Machine Migration Method between Different
Hypervisor Implementations and its Evaluation”, 2012 IEEE, Mar.
26, 2012, pp. 1089-1094; <http: ieeexplore.icee.org/stamp/stamp.
jsp?tp=&arnumber=6185394>.

Carl A. Waldspurger, “Memory resource management in VMware
ESX server” ACM SIGOPS Operating Systems Review—OSDI’02,
vol. 36 issue SI, Dec. 31, 2002, pp. 181-194; <http://dl.acm.org/
citation.cfm?id=844146>.

Li et al., “Virtual Machine Placement for Predictable and Time-
Constrained Peak Loads”, Springer-Verlag Berlin Heidelberg, Dec.
5, 2011, LNCS 7150, pp. 120-134; <http://link.springer.com/chap-
ter/10.1007%2F978-3-642-28675-9_ 9#ipage-1>.

U.S. Appl. No. 14/753,090, entitled “Determining Optimal Methods
for Creating Virtual Machines”, filed Jun. 29, 2015.

* cited by examiner

US 9,256,454 B2

Sheet 1 of 3

Feb. 9, 2016

U.S. Patent

l "Old
061
YITIOHLNOO WILSAS IA
081 0L1
NOILYOITddY HOYV3S 3Svav.Lva
gSl Syl
N3OV N3OV
— NOILO3TIO00 V.1v(NOILO3TI00 V.va
ol —__ —_
LOHSdVNS 051 ovL
— ANIHOVIN TYNLYIA ANIHOVIN TYNLYIA
09l o5l
AHOLISOd3H 10HSdVNS AYOLISOd3Y INIHOVIN TYNLYIA
ozl
HOSIAYIdAH
oLk
301A30 ONILNAWOD

US 9,256,454 B2

Sheet 2 of 3

Feb. 9, 2016

U.S. Patent

¢ 9Old

66z —~—] Sd3LS 40 IONINDIS AININY3LAA

ONISN A3.1LV3HO SI WA MaN

!

0€C -~ HLYd NJAID V¥ S10313S d3sn

L

)

GZC

WA M3aN 40 NOILV3™D
Ol SH1Vd 378ISSOd 11V AV1dSId

)

0zz —{ LNIOd ONILYVLS V SY LOHSJVYNS / WA ONILSIX3
ONISN SH1Vd 31dISSOd 31VINI VO

GLe

WA MaN
V ONILY3¥D
AN3JANNOI3Y

oLe

S3LNGIMLLY dVIINIS
JAVH SLOHSJVNS HO SWA
IN3S34d ANV Od

G0C

@31v3dO 39 OL WA MaN
V 04 SINIFWIHINDIY IAIFOTY

(_Lavis)

US 9,256,454 B2

Sheet 3 of 3

Feb. 9, 2016

U.S. Patent

00¢€

€ 9Old
(s)3aoinaa
TYNY3LXT
b
glLe
LINN SNOILVDINNANWOD vam_o<o“__m_upz_ - AV 1dSIq
S\m
\ N
r N AR 0z
061 || 081 ~-C0€
9lLe
0zl {1g9l || 091)
(S)40SS3ID0Ud
st |[ost I sv1 — 3JHOVO c
ovl|locr|] oz v0¢€
L AVYH
I9VHOILS N
IN31SISY3d ble
TN AHOWIN
JI'K \
80¢ 90¢

US 9,256,454 B2

1
DETERMINING OPTIMAL METHODS FOR
CREATING VIRTUAL MACHINES

FIELD OF THE INVENTION

The present invention relates generally to the field of vir-
tual machines, and more particularly to the creation of virtual
machines with specific attributes.

BACKGROUND OF THE INVENTION

Virtual machines (VMs) are commonly utilized by soft-
ware development teams to test new software across many
Operating Systems and different software configurations
without needing to use a different physical machine to create
each testing environment. Use of a virtual machine instead of
a physical machine for each test environment allows for
increased efficiency and lower costs of running tests. Testing
software on a large scale can often require the use of many
virtual machines, which has lead to new methods for creating
virtual machines.

SUMMARY

Embodiments of the present invention disclose a method,
computer program product, and system for determining opti-
mal pathways for creating a virtual machine (VM) with a
given set of requirements. A computer receives at least one
requirement for a new VM. The computer identifies an exist-
ing VM to be modified during the generation of the new VM.
The computer determines at least one step necessary to create
the new VM configuration from the existing VM. The com-
puter presents at least one pathway to the new VM from the
existing VM. The computer receives a selection of a presented
pathway to create the new VM.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWINGS

FIG. 1 is a functional block diagram illustrating a data
processing environment, in accordance with an embodiment
of the present invention.

FIG. 2 is a flowchart depicting operational steps of a search
application, executing on a computing device within the data
processing environment of FIG. 1.

FIG. 3 depicts a block diagram of components of a com-
puting device executing a search application, in accordance
with an embodiment of the present invention.

DETAILED DESCRIPTION

The traditional method of creating a virtual machine
involves installing an operating system and additional soft-
ware onto a virtual system running on a host computing
device. Because many virtual machines can share the same
physical hardware, virtual machines can also be created by
duplicating, or “cloning” existing virtual machines. This is
particularly useful if an identical copy of an existing virtual
machine is required.

Snapshots are used to save the state of a virtual machine at
a given point in time. Snapshots capture all data, applications,
settings, and the Operating System present on a virtual
machine at the point in time when the snapshot is taken.
Snapshots can be used to restore a virtual machine in the event
that an error occurs or data becomes corrupted. Another user
for a snapshot is to create a new virtual machine from a
previous state of a virtual machine captured by a snapshot.

10

15

20

25

30

35

40

45

50

55

60

65

2

As will be appreciated by one skilled in the art, aspects of
the present invention may be embodied as a system, method
or computer program product. Accordingly, aspects of the
present invention may take the form of an entirely hardware
embodiment, an entirely software embodiment (including
firmware, resident software, micro-code, etc.) or an embodi-
ment combining software and hardware aspects that may all
generally be referred to herein as a “circuit”, “module” or
“system.” Furthermore, aspects of the present invention may
take the form of a computer program product embodied in one
or more computer-readable medium(s) having computer
readable program code/instructions embodied thereon.

Any combination of computer-readable media may be uti-
lized. Computer-readable media may be a computer-readable
signal medium or a computer-readable storage medium. A
computer-readable storage medium may be, for example, but
not limited to, an electronic, magnetic, optical, electromag-
netic, infrared, or semiconductor system, apparatus, or
device, or any suitable combination of the foregoing. More
specific examples (a non-exhaustive list) of a computer-read-
able storage medium would include the following: an electri-
cal connection having one or more wires, a portable computer
diskette, a hard disk, a random access memory (RAM), a
read-only memory (ROM), an erasable programmable read-
only memory (EPROM or Flash memory), an optical fiber, a
portable compact disc read-only memory (CD-ROM), an
optical storage device, a magnetic storage device, or any
suitable combination of the foregoing. In the context of this
document, a computer-readable storage medium may be any
tangible medium that can contain, or store a program for use
by or in connection with an instruction execution system,
apparatus, or device.

A computer-readable signal medium may include a propa-
gated data signal with computer-readable program code
embodied therein, for example, in baseband or as part of a
carrier wave. Such a propagated signal may take any of a
variety of forms, including, but not limited to, electro-mag-
netic, optical, or any suitable combination thereof. A com-
puter-readable signal medium may be any computer-readable
medium that is not a computer-readable storage medium and
that can communicate, propagate, or transport a program for
use by or in connection with an instruction execution system,
apparatus, or device.

Program code embodied on a computer-readable medium
may be transmitted using any appropriate medium, including
but not limited to wireless, wireline, optical fiber cable, RF,
etc., or any suitable combination of the foregoing.

Computer program code for carrying out operations for
aspects of the present invention may be written in any com-
bination of one or more programming languages, including
an object oriented programming language such as Smalltalk,
C++ or the like and conventional procedural programming
languages, such as the “C” programming language or similar
programming languages. The program code may execute
entirely on a user’s computer, partly on the user’s computer,
as a stand-alone software package, partly on the user’s com-
puter and partly on a remote computer or entirely on the
remote computer or server. In the latter scenario, the remote
computer may be connected to the user’s computer through
any type of network, including a local area network (LAN) or
a wide area network (WAN), or the connection may be made
to an external computer (for example, through the Internet
using an Internet Service Provider).

Aspects of the present invention are described below with
reference to flowchart illustrations and/or block diagrams of
methods, apparatus (systems) and computer program prod-
ucts according to embodiments of the invention. It will be

US 9,256,454 B2

3

understood that each block of the flowchart illustrations and/
or block diagrams, and combinations of blocks in the flow-
chart illustrations and/or block diagrams, can be imple-
mented by computer program instructions. These computer
program instructions may be provided to a processor of a
general purpose computer, special purpose computer, or other
programmable data processing apparatus to produce a
machine, such that the instructions, which execute via the
processor of the computer or other programmable data pro-
cessing apparatus, create means for implementing the func-
tions/acts specified in the flowchart and/or block diagram
block or blocks.

These computer program instructions may also be stored in
a computer-readable medium that can direct a computer,
other programmable data processing apparatus, or other
devices to function in a particular manner, such that the
instructions stored in the computer-readable medium produce
an article of manufacture including instructions which imple-
ment the function/act specified in the flowchart and/or block
diagram block or blocks.

The computer program instructions may also be loaded
onto a computer, other programmable data processing appa-
ratus, or other devices to cause a series of operational steps to
be performed on the computer, other programmable appara-
tus or other devices to produce a computer-implemented pro-
cess such that the instructions which execute on the computer
or other programmable apparatus provide processes for
implementing the functions/acts specified in the flowchart
and/or block diagram block or blocks.

The present invention will now be described in detail with
reference to the Figures. FI1G. 1 is a functional block diagram
illustrating a Data Processing Environment, in accordance
with one embodiment of the present invention. The data pro-
cessing environment includes network 105, computing
device 110, hypervisor 120, virtual machine repository 130,
virtual machines 140 and 150, data collection agents 145 and
155, snapshot repository 160, snapshot 165, database 170,
search application 180, and system controller 190.

In an exemplary embodiment, hypervisor 120, virtual
machine repository 130, virtual machines 140 and 150, data
collection agents 145 and 155, snapshot repository 160, snap-
shot 165, database 170, search application 180, and system
controller 190 are stored on computing device 110. However,
in other embodiments, hypervisor 120, virtual machines 140
and 150, snapshot 165, database 170, search application 180,
and system controller 190 may be stored externally and
accessed through a communication network, such as network
105. Network 105 can be, for example, a local area network
(LAN), a wide area network (WAN) such as the internet, or a
combination of the two, and may include wired, wireless,
fiber optic or any other connection known in the art. In gen-
eral, network 105 can be any combination of connections and
protocols that will support communications between comput-
ing device 110, hypervisor 120, virtual machine repository
130, virtual machines 140 and 150, data collection agents 145
and 155 snapshot repository 160, snapshot 165, database 170,
search application 180, and system controller 190 are stored
on computing device 110. However, in other embodiments,
hypervisor 120, virtual machines 140 and 150, snapshot 165,
database 170, search application 180, and system controller
190 in accordance with a desired embodiment of the present
invention.

In various embodiments of the present invention, comput-
ing device 110 is a computing device that can be a standalone
device, a server, a laptop computer, a tablet computer, a net-
book computer, a personal computer (PC), or a desktop com-
puter. In another embodiment, computing device 110 repre-

5

10

20

25

30

35

40

45

50

55

60

65

4

sents a computing system utilizing clustered computers and
components to act as a single pool of seamless resources. In
general, computing device 110 can be any computing device
or a combination of devices with access to network 105,
hypervisor 120, virtual machines 140 and 150, snapshot 165,
database 170, search application 180 and system controller
190 and is capable of executing search application 180. Com-
puting device 110 may include internal and external hardware
components, as depicted and described in further detail with
respect to FIG. S.

In various embodiments of the current invention, hypervi-
sor 120 is an emulation program that allows virtual machines
to be executed on computing device 110. Hypervisor 120 can
be (a) a virtual machine monitor that runs along the host
operating system, (b) a specialized host operating system
having native emulation capabilities, or (c) a host operating
system with a hypervisor component wherein the hypervisor
component performs the emulation. In general, hypervisor
120 can be any program or software capable of emulating an
environment to execute virtual machines.

In an exemplary embodiment, VM repository 130 is a
computer database containing virtual machines 140 and 150.
Virtual machines 140 and 150 are virtual machines stored
within VM repository 130. Virtual machines 140 and 150 are
software implemented abstractions of hardware included in
computing device 110. In general, virtual machines 140 and
150 can be utilized to emulate functions of a physical com-
puter (e.g., execute programs). In another embodiment, vir-
tual machines 140 and 150 are representations of virtual
devices that are being implemented on computing device 110.
In one embodiment, the resources of computing device 110
(e.g., memory, central processing units (CPUs), storage
devices, and I/O devices) can be partitioned for use by one or
more virtual machines including virtual machines 140 and
150.

In exemplary embodiments, data collection agents 145 and
155 are computer programs installed onto virtual machines
140 and 150. Data collection agents 145 and 155 generate
application install data and communicate collected data to
database 170. Data collection agent 145 and 155 operate by
detecting an installation occurring on a virtual machine on
which either data collection agent is installed e.g., 145 or 155.
In an exemplary embodiment of the present invention, data
collection agents 145 and 155 will generate data such as the
number of steps required to complete an installation of a
software component, the total time required for the installa-
tion of a software component, and the amount of user input
required during the installation of a software component upon
completion of an installation process. The generated data is
sent to and stored as part of database 170.

In exemplary embodiments, snapshot repository 160 is a
computer database containing all snapshots taken of virtual
machines present in virtual machine repository 130. Snapshot
library 160 contains snapshot 165. In certain embodiments,
snapshot 165 includes a record of an earlier state of a virtual
machine present in virtual machine repository 130.

In general, snapshot 165 includes a record of an earlier
state of a virtual machine present in virtual machine reposi-
tory 130. Snapshot 165 facilitates the operation of restoring
its corresponding virtual machine to its state at the time the
snapshot was created. The record comprising snapshot 165
includes a copy of all data present on the virtual machine’s
storage which may be an emulated version of a hard drive,
solid state drive, or any other computer storage device known
in the art. Snapshot 165 also includes the state of virtual

US 9,256,454 B2

5

machine 165’s memory, which may be an emulated version of
random access memory or any other computer storage
medium known in the art.

Database 170 is a computer database containing records of
all present virtual machines and snapshots in virtual machine
repository 130 as well as snapshot repository 160. Database
170 receives data from data collection agents 145, data col-
lection agent 155, and system controller 190.

Search application 180 is a software program that utilizes
data stored in database 170 to determine possible sequences
of steps required to create a new virtual machine with a given
set of attributes. In an exemplary embodiment of the present
invention, the process of determining the sequence of steps
required to create a new virtual machine with a given set of
attributes comprises (a) receiving the requirements for a new
virtual machine from a user, (b) searching through records of
existing virtual machines and snapshots stored in database
170 for a record which includes similar software properties,
and (c) determining the additional steps required to create a
new virtual machine using an existing record as a starting
point, if any.

System controller 190 is a system controller for hypervisor
120. System controller 190 observes the behavior and actions
ofhypervisor 120 and sends a record of any action performed
to database 170. In an exemplary embodiment, actions
recorded include (a) a virtual machine being copied to create
anew virtual machine, (b) a virtual machine being deleted, (c)
a snapshot being created from a virtual machine, and (d) a
virtual machine being restored from a record contained in a
snapshot.

FIG. 2 is a flowchart depicting operational steps of search
application 180 for determining the possible sequences of
steps required to create the desired virtual machine, in accor-
dance with an embodiment of the present invention.

Search application 180 is a software program which deter-
mines all possible sequences of steps required for creating a
new virtual machine with a given set of attributes and presents
them to the user.

In an exemplary embodiment of the present invention, a
user inputs requirements for a new virtual machine into
search application 180. Search application 180 receives
requirements for a new virtual machine from a user in step
205.

Search application 180 performs a query of database 170 to
search for available virtual machines or snapshots possessing
attributes required for the new virtual machine to be created in
decision step 210. These attributes can include at least one of
(a) an operating system, (b) an installed software application,
(c¢) an amount of hardware resources available to the virtual
machine.

If no virtual machines or snapshots within virtual machine
repository 130 or snapshot repository 160 have any of the
attributes required for the new virtual machine (decision step
210, no branch), search application 150 will recommend cre-
ating a new virtual machine without using an existing virtual
machine or snapshot as a starting point, in step 215. Once a
recommendation to create a new virtual machine without the
use of an existing virtual machine or snapshot is made, the
new virtual machine will be created using the determined
sequence of steps in step 235.

If'a virtual machines or snapshots can be used as a starting
point to create the new required virtual machine (decision
step 210, yes branch), all the possible sequences of steps to
create the new virtual machine using the existing virtual
machines and snapshots are determined in step 220. A
sequence of steps can include one or more of (a) making a
copy of a virtual machine, (b) restoring a virtual machine

20

30

40

45

50

60

6

from a snapshot, (c) installing or uninstalling additional soft-
ware onto a virtual machine, or (d) changing the amount of
hardware resources available to a virtual machine.

Possible sequences of steps which can be used to create the
new virtual machine are presented to the user in step 225. In
various embodiments of the current invention, additional
information may be displayed along with each set of possible
steps determined. Additional information can include one or
more of (a) the total time required for the sequence of steps to
be performed, (b) the number of steps required to complete
the generation of the virtual machine, or (¢) the complexity of
the steps required within the sequence of steps. The complex-
ity of a sequence of steps can be determined using one or more
of (a) the number of keystrokes required to install a software
component, (b) the amount of manual data input required to
install additional software, or (c) the number of carriage
returns required to install additional software.

Once all possible sequences of steps are determined, the
user selects a presented sequence of steps to be used to build
the new virtual machine, in step 230.

The new virtual machine is created using the selected path-
way, which was generated in step 220 and was selected by the
user in step 230. In an exemplary embodiment of the present
invention, the user manually creates the virtual machine by
following the selected sequence of steps provided. In other
embodiments, search application 180 triggers the creation of
the new virtual machine by an automated system. An auto-
mated system for creating a desired virtual machine can
include running scripting created by search application 180
which provides program instructions allowing a configura-
tion management application such as puppet or chef'to follow
the selected sequence of steps to create the new virtual
machine.

FIG. 3 depicts a block diagram of components of comput-
ing device 110 in accordance with an illustrative embodiment
of the present invention. It should be appreciated that FIG. 3
provides only an illustration of one implementation and does
not imply any limitations with regard to the environments in
which different embodiments may be implemented. Many
modifications to the depicted environment may be made.

Computing device 110 includes communications fabric
302, which provides communications between computer pro-
cessor(s) 304, memory 306, persistent storage 308, commu-
nications unit 310, and input/output (I/O) interface(s) 312.
Communications fabric 302 can be implemented with any
architecture designed for passing data and/or control infor-
mation between processors (such as microprocessors, com-
munications and network processors, etc.), system memory,
peripheral devices, and any other hardware components
within a system. For example, communications fabric 302
can be implemented with one or more buses.

Memory 306 and persistent storage 308 are computer-
readable storage media. In this embodiment, memory 306
includes random access memory (RAM) 314 and cache
memory 316. In general, memory 306 can include any suit-
able volatile or non-volatile computer-readable storage
media.

Hypervisor 120, virtual machine repository 130, virtual
machines 140 and 150, data collection agents 145 and 155,
snapshot repository 160, snapshot 165, database 170, search
application 180, and system controller 190 are stored in per-
sistent storage 308 for execution and/or access by one or more
of the respective computer processors 304 via one or more
memories of memory 306. In this embodiment, persistent
storage 308 includes a magnetic hard disk drive. Alterna-
tively, or in addition to a magnetic hard disk drive, persistent
storage 308 can include a solid state hard drive, a semicon-

US 9,256,454 B2

7

ductor storage device, read-only memory (ROM), erasable
programmable read-only memory (EPROM), flash memory,
or any other computer-readable storage media that is capable
of storing program instructions or digital information.

The media used by persistent storage 308 may also be
removable. For example, a removable hard drive may be used
for persistent storage 308. Other examples include optical and
magnetic disks, thumb drives, and smart cards that are
inserted into a drive for transfer onto another computer-read-
able storage medium that is also part of persistent storage 308.

Communications unit 310, in these examples, provides for
communications with other data processing systems or
devices, including resources of enterprise grid 112 and client
devices 104, 106, and 108. In these examples, communica-
tions unit 310 includes one or more network interface cards.
Communications unit 310 may provide communications
through the use of either or both physical and wireless com-
munications links. Hypervisor 120, virtual machine reposi-
tory 130, virtual machines 140 and 150, data collection agents
145 and 155, snapshot repository 160, snapshot 165, database
170, search application 180, and system controller 190 may
be downloaded to persistent storage 308 through communi-
cations unit 310.

1/O interface(s) 312 allows for input and output of data with
other devices that may be connected to server computer 102.
For example, 1/O interface 312 may provide a connection to
external devices 318 such as a keyboard, keypad, a touch
screen, and/or some other suitable input device. External
devices 318 can also include portable computer-readable
storage media such as, for example, thumb drives, portable
optical or magnetic disks, and memory cards. Software and
data used to practice embodiments of the present invention,
e.g., search application 180, database 170, data collection
agent 145, and data collection agent 155, can be stored on
such portable computer-readable storage media and can be
loaded onto persistent storage 308 via I/O interface(s) 312.
1/0 interface(s) 312 also connects to a display 320.

Display 320 provides a mechanism to display data to auser
and may be, for example, a computer monitor.

The programs described herein are identified based upon
the application for which they are implemented in a specific
embodiment of the invention. However, it should be appreci-
ated that any particular program nomenclature herein is used
merely for convenience, and thus the invention should not be
limited to use solely in any specific application identified
and/or implied by such nomenclature.

The flowchart and block diagrams in the Figures illustrate
the architecture, functionality, and operation of possible
implementations of systems, methods and computer program
products according to various embodiments of the present
invention. In this regard, each block in the flowchart or block
diagrams may represent a module, segment, or portion of
code, which comprises one or more executable instructions
for implementing the specified logical function(s). It should
also be noted that, in some alternative implementations, the
functions noted in the block may occur out of the order noted
in the Figures. For example, two blocks shown in succession
may, in fact, be executed substantially concurrently, or the
blocks may sometimes be executed in the reverse order,
depending upon the functionality involved. It will also be
noted that each block of the block diagrams and/or flowchart
illustration, and combinations of blocks in the block diagrams
and/or flowchart illustration, can be implemented by special
purpose hardware-based systems that perform the specified
functions or acts, or combinations of special purpose hard-
ware and computer instructions.

5

10

15

30

35

40

50

60

65

8

What is claimed is:

1. A method for determining optimal pathways for creating
a virtual machine (VM) with a given set of requirements, the
method comprising:

a computer receiving at least one requirement for a new

VM;

a computer identifying an existing VM to be modified
during the generation of the new VM;

a computer determining at least one step necessary to cre-
ate the new VM configuration from the existing VM;

a computer presenting to a user pathways for creating the
new VM from the existing VM, wherein the pathways
include at least three of: a total time required to create the
new VM, a number of steps required to create the new
VM, the at least one step, a complexity of the at least one
step, and a degree of difficulty of the at least one step;
and

a computer receiving a selection of a presented pathway to
create the new VM.

2. The method described in claim 1, the method further

comprising:

the computer searching a VM and snapshot databases fora
VM or a snapshot, wherein the search is based, atleast in
part, on a type of installed software required by the new
VM, and a type of operating system required by the new
VM.

3. The method described in claim 1, wherein the existing
VM is similar to the new VM based on at least one of a) a type
of installed operating system, b) a type of same installed
application, or ¢) a quantity of an allocated hardware
resource.

4. The method described in claim 1, wherein the deter-
mined at least one step necessary to create the new VM
configuration from the existing VM includes at least one of:
installing an operating system onto the existing VM, install-
ing an application onto the existing VM, and updating an
installed application of the existing VM.

5. The method described in claim 1, wherein the degree of
difficulty of the at least one step comprises a degree of diffi-
culty of the at least one step necessary to create the new VM
configuration from the existing VM configuration.

6. The method described in claim 1, wherein the at least one
requirement for the new VM includes: a type of the installed
operating system, an installed application, and an allocated
amount of hardware resources.

7. The method described in claim 1, the method further
comprising:

the computer executing, at least a part of, the selected
pathway.

8. The method described in claim 1, wherein the complex-
ity of the at least one step comprises a complexity of the at
least one step necessary to create the new VM configuration
form the existing VM configuration.

9. The method described in claim 1, wherein the complex-
ity of the at least one step necessary to create the new VM
configuration from the existing VM configuration is based on
at least one of: a number of keystrokes required to install a
software component, an amount of manual data input
required to install additional software, and a number of car-
riage returns required to install additional software.

10. The method described in claim 1, wherein the deter-
mined at least one step necessary to create the new VM
configuration from the existing VM includes installing an
operating system onto the existing VM, installing an applica-
tion onto the existing VM, and updating an installed applica-
tion of the existing VM.

#* #* #* #* #*

